This site uses cookies. By continuing, your consent is assumed. Learn more

144.3fm shares

Binomial probability definition statistics of sexual immorality

opinion

Statistics is a branch of mathematics dealing with data collection, organization, analysis, interpretation and presentation. Populations can be diverse topics such as "all people living in a country" or "every atom composing a crystal". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.

When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole.

An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements.

In contrast, an observational study does not involve experimental manipulation. Two main statistical methods are used in data analysis: Inferences on mathematical statistics are made under the framework of probability theorywhich deals with the analysis of random phenomena. A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model.

A hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test.

Working from a null hypothesis, two basic forms of error are recognized: Binomial probability definition statistics of sexual immorality I errors null hypothesis is falsely rejected giving a "false positive" and Type II errors null hypothesis fails to be rejected and an actual difference between populations is missed giving a "false negative". Measurement processes that generate statistical data are also subject to error.

Many of these errors are classified as random noise or systematic biasbut other types of errors e. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory.

In more recent years statistics has relied more on statistical software to produce tests such as descriptive analysis. Statistics is a mathematical body of science that pertains to the collection, analysis, interpretation or explanation, and presentation of data[8] or Binomial probability definition statistics of sexual immorality a branch of mathematics. While many scientific investigations make use of data, statistics is concerned with the use of data in the context of uncertainty and decision making in the face of uncertainty.

Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysislinear algebrastochastic analysisdifferential equationsand measure-theoretic probability theory.

In applying statistics to a problem, it is common practice to start with a population or process to be studied. Populations can be diverse topics such as "all persons living in a country" or "every atom composing a crystal".

Ideally, statisticians compile data about the entire population an operation called census. This may be organized by governmental statistical institutes.

Descriptive statistics can be used to summarize the population data. Numerical descriptors include mean and standard deviation for continuous data types like incomewhile frequency and percentage are more useful in terms of describing categorical data like race.

When a census is not feasible, a chosen subset of the population called a sample is studied. Once a sample that is representative of the "Binomial probability definition statistics of sexual immorality" is determined, data is collected for the sample members in an observational or experimental setting.

Again, descriptive statistics can be Binomial probability definition statistics of sexual immorality to summarize the sample data. However, the drawing of the sample has been subject to an element of randomness, hence the established numerical descriptors from the sample are also due to uncertainty. To still draw meaningful conclusions about the entire population, inferential statistics is needed. It uses patterns in the sample data to draw inferences about the population represented, accounting for randomness.

For more extensive and exciting...

These inferences may take the form of: Inference can extend to forecastingprediction and estimation of unobserved values either in or associated with the population being studied; it can include extrapolation and interpolation of time series or spatial dataand can also include data mining. When full census data cannot be collected, statisticians collect sample data by developing specific experiment designs and survey samples.

Statistics itself also provides tools for prediction and forecasting through statistical models. The idea of making inferences based on sampled data began around the mids in connection with estimating populations and developing precursors of life insurance. To use a sample as a guide to an entire population, it is important that it truly represents the overall population.

Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative.

Statistics offers methods to estimate and correct for any bias within the sample and data collection procedures. There are also methods of experimental design for experiments that can lessen these issues at the outset of a study, strengthening its capability to discern truths about the population. Sampling theory is part of the mathematical discipline of probability theory. Probability is used in mathematical statistics to study the sampling distributions of sample statistics and, more generally, the properties of statistical procedures.

The use of Binomial probability definition statistics of sexual immorality statistical method is valid when the system or population under consideration satisfies the assumptions of the method.

The difference in point of view between classic probability theory and sampling theory is, roughly, that probability theory starts from the given parameters of a total population to deduce probabilities that pertain to samples.

Statistical inference, however, moves in the opposite direction— inductively inferring from samples to the parameters of a larger or total population. A common goal for a statistical research project is to investigate causalityand in particular to draw a conclusion on the effect of changes in the values of predictors or independent variables on dependent variables.

There are two major types of causal statistical studies: In both types of studies, the effect of differences of an independent variable or variables on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted. Each can be very effective. Instead, data are gathered and correlations between predictors and response are investigated.

While the tools of data analysis work best on data from randomized studiesthey are also applied to other kinds of data—like natural experiments and observational studies [15] —for which a Binomial probability definition statistics of sexual immorality would use a modified, more structured estimation method e. Experiments on human behavior have special concerns.

The famous Hawthorne study examined changes to the working environment at the Hawthorne plant of the Western Electric Company.

Navigation menu

The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected productivity.

It turned out "Binomial probability definition statistics of sexual immorality" productivity indeed improved under the experimental conditions. However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and blindness. The Hawthorne effect refers to finding that an outcome in this case, worker productivity changed due to observation itself. Those in the Hawthorne study became more productive not because the lighting was changed but because they were being observed.

An example of an observational study is one that explores the association between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a cohort studyand then look for the number of cases of lung cancer in each group.

Various attempts have been made to produce a taxonomy of levels of measurement. The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one transformation. Ordinal measurements have imprecise differences between consecutive values, but have a meaningful order to those values, and permit any order-preserving transformation. Interval measurements have meaningful distances between measurements defined, but the zero value is arbitrary as in the case with longitude and temperature measurements in Celsius or Fahrenheitand permit any linear transformation.

Ratio measurements have both a meaningful zero value and the distances between different measurements defined, and permit any rescaling transformation.

Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variableswhereas ratio and interval measurements are grouped together as quantitative variableswhich can be either discrete or continuousdue to their numerical nature.

Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented "Binomial probability definition statistics of sexual immorality" the Boolean data typepolytomous categorical variables with arbitrarily assigned integers in the integral data typeand continuous variables with the real data type involving floating point computation.

But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented.

Other categorizations have been proposed. For example, Mosteller and Tukey [18] distinguished grades, ranks, counted fractions, counts, amounts, and balances.

Nelder [19] described continuous counts, continuous ratios, count ratios, and categorical modes of data. See also Chrisman[20] van den Berg The issue of whether or not it is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions.

Whether or not a transformation is sensible to contemplate depends on the question one is trying to answer" Hand,p.